

Course Title: Quantum Mechanics II

Course Code: 451Phys

Program: Physics

Department: Physics

College: Science

Institution: Jazan University

Version: **2022**

Last Revision Date: 22/12/2022

Table of Contents:

Content	Page
A. General Information about the course	
Teaching mode Contact Hours	
B. Course Learning Outcomes, Teaching Strategies and Assessment Methods	
C. Course Content	
D. Student Assessment Activities	
E. Learning Resources and Facilities	
1. References and Learning Resources	
2. Required Facilities and Equipment	
F. Assessment of Course Quality	
G. Specification Approval Data	

A. General information about the course:

Co	Course Identification					
1.	Credit hours:	3 hours				
2.	Course type					
а	University □	College □	Department⊠	Track□	Others□	
b	Required ⊠	Elective□				
2	Laval/voor of w	high this source	o io			

3. Level/year at which this course is offered: 11/YEAR 4

Level 11/4Year

4. Course General Description

This course is the continuation of Quantum Mechanics1. It mainly encompasses approximation techniques such as perturbation theory, variational principle, WKB method and Born approximation. These approximation techniques will be applied to calculate the energy and wave corrections to the perturbed simple harmonic oscillator, relativistic correction to the hydrogen atom and to study the interaction of radiation with matter and scattering.

- 5. Pre-requirements for this course (if any): 352Phys
- 6. Co- requirements for this course (if any): NA
- 7. Course Main Objective(s)

This course is designed to provide students with the following:

- the formulation of quantum mechanics that can be used in obtaining the first and second order energy and wave function corrections for non degenerate and degenerate cases.
- the transition probabilities for a two-level system using time-dependent perturbation theory,

approximately obtain the lowest ground state energy by optimizing variational parameters of the trial function, and generating scattering amplitudes and cross sections using Bornapproximation.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	30	91%
2.	E-learning		
	Hybrid		
3.	Traditional classroom	3	9%
	E-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	3
5.	Others (specify)	
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with the program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unde	rstanding		
1.1	Discuss the basics of the formulation of quantum theory	PLO1.1	Lectures, discussion comparisons	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey
1.2	Describe the absorption, stimulated emission, and spontaneous emission processes, the idea of variational principle, perturbation theory, quantum tunneling and quantum scattering.	PLO1.2	Lectures, discussion	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey
2.0	Skills			
2.1	Derive the first and second order energy and wave function corrections using time-independent perturbation techniques, the expectation value of the Hamiltonian and show it is always greater or equal to the ground state energy using the variational technique.	PLO2.2	Lectures, discussion	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey

Code	Course Learning Outcomes	Code of CLOs aligned with the program	Teaching Strategies	Assessment Methods
2.2	Obtain the transition probabilities for two-level system using time-dependent perturbation theory. cat and cbt for two-level system using time-dependent perturbation.	PLO2.2	Lectures, discussion, Tutorial	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey
2.3	Calculate the first and second order energy and wave function corrections,the lowest ground state energy using variational technique and the fact that the ground state energy is the lowest possible energy.	PLO2.1	Lectures, discussion, Tutorial	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey
2.4	Estimate the energy using the WKB approximation for some selected potentials, the total cross section of selected system using scattering theory.	PLO2.1	Lectures, discussion, Tutorial	Direct (formative and summative): In-class interactive questioning, quizzes, written exams Indirect: student survey
3.0	Values, autonomy, ar	nd responsibility		
3.1	Develop skills of working in groups in group assignments and discussions and bear individual	PLO3.1	Discussion, question, and answer	Direct (formative and summative): In-class interactive

Code	Course Learning Outcomes	Code of CLOs aligned with the program	Teaching Strategies	Assessment Methods
	responsibility in the assigned tasks			questioning, quizzes, written exams Indirect: student survey
3.2				

C. Course Content

No	List of Topics	Contact Hours
1.	Time-independent perturbation theory	8
2.	Time-dependent perturbation theory	8
3	The Variational method	8
4	The WKB approximation	4
5	Born approximation (The Scattering theory)	5
	Total	33

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Mid-term exam	6	20%
2.	Assessment tasks	Distributed	30%
3.	Final exam	12	50%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	D. J. Griffiths, "Introduction to Quantum Mechanics," 2nd Edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2005.
Supportive References	Introductory Quantum Mechanics; R. Liboff, 4th Edition, Addison-Wesely, 2002.Quantum Mechanics; Sara M. McMurry, Addison-
	Wesely, 1994.
Electronic Materials	quantummechanics.com; quantum/Fayman.com
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classroom
Technology equipment (projector, smart board, software)	Data show- smart board
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Peer and program leader	Indirect (CES)- Indirect peer evaluation
Effectiveness of students assessment	Students, Program assessment committee	Direct/ Indirect
Quality of learning resources	Instructor	
The extent to which CLOs have been achieved	Students, Faculty members	Direct/ Indirect
Other		Indirect

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data

COUNCIL /COMMITTEE	DEPARTMENT BOARD
REFERENCE NO.	PHYS2304
DATE	28/2/2023

Approved by:

Head of Physics Department

Dr. Hussain Alathlawi

